Problem A. 17

Prove that $\operatorname{Tr}\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)=\operatorname{Tr}\left(\mathrm{T}_{2} \mathrm{~T}_{1}\right)$. It follows immediately that $\operatorname{Tr}\left(\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}\right)=\operatorname{Tr}\left(\mathrm{T}_{2} \mathrm{~T}_{3} \mathrm{~T}_{1}\right)$, but is it the case that $\operatorname{Tr}\left(\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}\right)=\operatorname{Tr}\left(\mathrm{T}_{2} \mathrm{~T}_{1} \mathrm{~T}_{3}\right)$, in general? Prove it, or disprove it. Hint: The best disproof is always a counterexample - the simpler the better!

Solution

Consider element $i j$ of the product of two $n \times n$ matrices, A and B .

$$
(\mathrm{AB})_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Take the trace of $A B$.

$$
\begin{aligned}
\operatorname{Tr}(\mathrm{AB}) & =\sum_{i=1}^{n}(\mathrm{AB})_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} B_{k i} A_{i k} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} B_{k i} A_{i k} \\
& =\sum_{k=1}^{n}(\mathrm{BA})_{k k} \\
& =\operatorname{Tr}(\mathrm{BA})
\end{aligned}
$$

Let C be a third $n \times n$ matrix. Because matrix multiplication is associative,

$$
\operatorname{Tr}[\mathrm{A}(\mathrm{BC})]=\operatorname{Tr}[(\mathrm{BC}) \mathrm{A}] \quad \text { and } \quad \operatorname{Tr}[(\mathrm{AB}) \mathrm{C}]=\operatorname{Tr}[\mathrm{C}(\mathrm{AB})],
$$

that is, $\operatorname{Tr}(A B C)=\operatorname{Tr}(B C A)=\operatorname{Tr}(C A B)$. However, $\operatorname{Tr}(A B C) \neq \operatorname{Tr}(B A C)$; for example, if

$$
A=\left(\begin{array}{rr}
-1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)
$$

then

$$
\begin{array}{lll}
\mathrm{ABC}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \Rightarrow & \operatorname{Tr}(\mathrm{ABC})=1+0=1 \\
\mathrm{BAC}=\left(\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right) & \Rightarrow & \operatorname{Tr}(\mathrm{BAC})=0+0=0
\end{array}
$$

